

А.В. Чернышов

АНАЛИЗ ПОГРЕШНОСТЕЙ БЕСКОНТАКТНОГО МЕТОДА НЕРАЗРУШАЮЩЕГО КОНТРОЛЯ ТФХ МАТЕРИАЛОВ

Разработан бесконтактный частотноимпульсный по тепловому воздействию метод неразрушающего контроля (НК) теплофизических характеристик (ТФХ) материалов, сущность которого заключается в следующем [1].

Рис. 1 Схема устройства, реализующего бесконтактный метод НК ТФХ материалов

Над исследуемым объектом 1 (рис. 1) помешают точечный источник тепловой энергии 2 (лазер) И термоприемник 3, сфокусированный на поверхность, подверженную тепловому воздействию, И регистрирующий температуру этой поверхности по ее электромагнитному излучению. Первоначально термоприемник фокусируют В точку поверхности исследуемого объекта, находящуюся на расстоянии R₁ от центра пятна нагрева и перемещение источника начинают энергии термоприемника над исследуемым изделием со скоростью V. Сигнал с термоприемника, пропорциональный избыточной температуре в контроли-

руемой точке поверхности исследуемого объекта, усиливается усилителем 4 и поступает на первый вход вычитающего устройства 5, на второй вход которого подается с блока 6 напряжение, моделирующее значение заданной

температуры T_{1зад}. Разностный сигнал с выхода вычитающего устройства 5 через аналого-цифровой преобразователь 7 поступает в микропроцессорное устройство 8. В зависимости от величины разностного сигнала в микропроцессоре вычисляется значение кода, который подается на управляемый делитель частоты 9 и определяет коэффициент деления опорной частоты, подаваемой с генератора тактовых импульсов 10. Результирующая частота подается на блок управления 11 оптическим затвором 12. Последний осуществляет частотно-импульсную модуляцию луча лазера 2. Изменение частоты подачи тепловых импульсов от источника тепла (лазера) осуществляется до тех пор, пока контролируемая избыточная температура поверхности исследуемого объекта станет равной заданному значению T_{13ap} , т.е. $T(R_1) = T_{13ap}$. При этом разностный сигнал на выходе вычитающего устройства 5 отсутствует, а в оперативной памяти микропроцессора δ фиксируется частота подачи тепловых импульсов от источника F_{x1} , значение которого может быть вызвано оператором на индикаторное устройство 13. Затем по команде с микропроцессора 8 блок механического изменения расстояния между источником и термоприемником 14 переносит термоприемник на расстояние R₂ от пятна нагрева источника тепла. Далее аналогично вышеописанным процедурам осуществляется изменение частоты подачи тепловых импульсов от источника тепла до тех пор, пока контролируемая избыточная температура на расстоянии R_2 станет равной заданному значению T_1 , т.е. $T(R_2) = T_{13a\pi}$.

При этом в оперативной памяти микропроцессора фиксируется найденная частота тепловых импульсов F_{x2} . Величина избыточной температуры $T_{1_{3ад}}$ задается в диапазоне 30...50 % от температуры термодеструкции исследуемого материала. Искомые ТФХ определяются по формулам:

$$a = \frac{VR_1}{2\ln 3\frac{F_{x1}}{F_{x2}}},$$
 (1)

$$\lambda = \frac{F_{x1}q_0}{2\pi T(R_1)R_1} \exp\left(-\frac{V(R_1 - x)}{2a}\right),$$
 (2)

Проведем анализ погрешностей результатов измерений тепло- и температуропроводности а и λ на аналитической основе используя подход, изложенный в работе [2]. В соответствии с уравнением (1) полная погрешность Δa_j^* зависит от точности установления V, R₁, а также от точности измерений F_{x1} и F_{x2} . Следовательно, полная погрешность (без учета погрешности округления) результатов измерения а будет определяться выражением:

$$\Delta a_{j}^{*} = a_{j}^{*} - a_{j} = \Delta_{V} a_{j}^{*} + \Delta_{R_{1}} a_{j}^{*} + \Delta_{F_{X1}} a_{j}^{*} + \Delta_{F_{X2}} a_{j}^{*},$$

где $\Delta_V a_j^* = \frac{\Delta V R_1}{2 \ln \left[3 \frac{F_{x1j}}{F_{x2j}} \right]}$ – погрешность, обусловленная отличием V от истинного значения V_{μ} , т.е. $V = V_{\mu} +$ $\Delta V; \quad \Delta_{R_1} a_j^* = \frac{V\Delta R}{2\ln\left[3\frac{F_{x1_j}}{F_{x2_j}}\right]} - \text{погрешность, обусловленная отличием } R_1 \text{ от } R_{1u} (R_1 = R_{1u} + \Delta R_1);$ $\Delta_{F_{x1}}a_{j}^{*} = \frac{V \cdot R_{1}}{2} \cdot \left| \frac{1}{\ln \left[3 \frac{F_{x1uj} + \Delta F^{*}_{x1j}}{F_{x1}} \right]} - \frac{1}{\ln \left[\frac{F_{x1uj}}{F_{x1}} \right]} \right| - \text{погрешность, обусловленная отличием } F_{x1} \text{ от } F_{x1u} (F_{x1} = 1)$ $F_{x1y} + \Delta F_{x1}$; $\Delta_{F_{x2}} a_{j}^{*} = \frac{VR_{1}}{2} \left[\frac{1}{\ln \left[3 \frac{F_{x1j}^{*}}{F_{x2uj} + \Delta F_{x2j}^{*}} \right]} - \frac{1}{\ln \left[\frac{F_{x1j}^{*}}{F_{x2uj}} \right]} \right] - \text{погрешность, обусловленная отличием } F_{x2} \text{ от } F_{x2u} (F_{x2} = 1)$

 $F_{x2y} + \Delta F_{x2}$

Рассмотрим далее уравнение (2). Его структура показывает, что полная погрешность $\Delta \lambda_j^*$ зависит от точности установления q_0, R_l, V , а также от точности измерений $T_1^*(R_1), F_{xl}^*, x^*, a^*$. Следовательно,

$$\Delta \lambda_j^* = \Delta_{q_0} \lambda_j^* + \Delta_{F_{x_1}} \lambda_j^* + \Delta_V \lambda_j^* + \Delta_{R_1} \lambda_j^* + \Delta_x \lambda_j^* + \Delta_{T(R_1)} \lambda_j^* + \Delta_a \lambda_j^*,$$

где $\Delta_{q_0} \lambda_j^* = \Delta q_0 \frac{F_{x_{1j}}}{2\pi T_j(R_1)R_1} \exp\left(-\frac{V(R_1 - x)}{2a_j}\right)$ – погрешность из-за отличия q_0 от $q_{0\mu}$ ($q_0 = q_{0\mu} + \Delta q_0$); $\Delta_{--} \lambda_j^* = \Delta E^*$ – q_0 ($V(R_1 - x)$)

$$\Delta_{F_{x1}}\lambda_j^* = \Delta F_{x1j}^* \frac{q_0}{2\pi T_j(R_1)R_1} \exp\left(-\frac{V(R_1-x)}{2a_j}\right) - \text{погрешность, обусловленная отличием } F_{x1} \text{ от истинного}$$

значения $F_{r1\mu}$;

$$\Delta_V \lambda_j^* = \frac{F_{xj}^* q_0}{2\pi T_j(R_1) R_1} \left[\exp\left(-\frac{\left(V_{\mu} + \Delta V_j^*\right)(R_1 - x)}{2a_j}\right) - \exp\left(-\frac{V_{\mu}(R_1 - x)}{2a_j}\right) \right] - \text{погрешность, обусловленная отличием}$$

V от истинного значения V_{μ} .

Аналогично определяются погрешности, обусловленные отличием x от x_u , a от a_u , $T(R_1)$ от $T_u(R_1)$.

Полученные соотношения для определения составляющих полной погрешности позволяют выделить доминанты и определить характеристики этих погрешностей. В табл. 1 представлены результаты выделения доминант.

Параметр		R_1	x	F_{x1}	F_{x2}	$T(R_1)$	а	q_0	V
Максимальное	δa	12	-	16	54	-	-	-	12
отклонение, %	δλ	38	49	11,4	_	15,6	23	11,4	56

Примечание: отклонение каждого параметра задавалось ±10 % при постоянстве остальных.

Анализ полученных результатов (табл. 1) показывает, что из четырех компонент a доминирует F_{x1} , а далее F_{x2} , R_1 и V. Для λ доминируют V, x и R_1 , далее по степени значимости следуют a, $T(R_1)$, F_{x1} и q_0 .

Полученная информация о доминирующих компонентах и их вкладе в общую погрешность позволяет целенаправленно влиять на источники погрешностей, что в итоге будет способствовать повышению метрологического уровня представленного в работе метода неразрушающего контроля ТФХ материалов и готовых изделий.

СПИСОК ЛИТЕРАТУРЫ

1 Патент РФ № 200117813. Способ бесконтактного контроля ТФС материалов и устройство для его осуществления / А.В. Чернышов, Э.В. Сысоев. Заявл. 26.06.2001; Опубл. 11.03.2003.

2 Чернышова Т.И., Чернышов В.Н. Методы и средства неразрушающего контроля теплофизических свойств материалов. М.: Машиностроение, 2001. 241 с.

Кафедра «Криминалистика и информатизация правовой деятельности»