Ю.А. Ворожейкин, М.А. Кузнецов

ГРАФИЧЕСКИЙ АНАЛИЗ ТЕРМОДИНАМИЧЕСКОЙ ПОВЕРХНОСТИ УГЛЕВОДОРОДОВ

Экспериментальной основой для построения термодинамической поверхности послужили прецизионные данные об изобарной теплоемкости C_p ряда нормальных алканов, полученные методом проточного адиабатического калориметра с замкнутой схемой циркуляции и калориметрическим измерением расхода. Общая погрешность измерения C_p не превышала 0,4 % в широкой области параметров состояния и возрастала до 2...4 % в области фазовых переходов.

Графическая аппроксимация экспериментальных данных привела к построению термодинамических поверхностей C_p — T-P нормальных алканов (рис. 1), где T — температура, P — давление. Поверхность имеет весьма сложный характер (разрывы, острые максимумы, резкие изменения кривизны) и с трудом поддается аналитическому описанию. В тоже время, термодинамические соотношения между C_p и энтальпией H, энтропией S, теплотой испарения ΔH_V , энергией Гиббса G относительно просты и могут быть реализованы графически :

$$H(P,T) = C_1 + \int_{T=298.15}^{T} C_p(T) dT$$
; (1)

$$S(P,T) = C_2 + \int_{T=298,15}^{T} \frac{C_p(T)}{T} dT$$
; (2)

$$G(P,T) = H(P,T) - TS(P,T);$$
(3)

$$\Delta H_V = H^{II} - H^I \ . \tag{4}$$

Интегралы в уравнениях (1) и (2) определены графически методом парабол Симпсона. Постоянные C_1 и C_2 представляют собой известные значения соответствующих свойств в начале отсчета (при T = 298,15 К и давлении интегрируемой изобары).

Для определения температуры $T_{\scriptscriptstyle M}$ максимума теплоемкости C_{PM} на изобаре использовался метод графического построения «прямолинейного диаметра» в координатах $C_{\scriptscriptstyle D}-T$.

Равенство в пределах ± 0.2 % значений энергий Гиббса, вычисленных на жидкостных и газовых ветвях пограничных кривых, свидетельствует о том, что точность графического определения H, S, G и ΔH_V по экспериментальным данным о C_p не уступает точности самого эксперимента.

Таким образом, экспериментально определив только C_p , чисто графическими методами, удалось получить весь комплекс калорических свойств вещества.

Анализ термодинамических поверхностей $C_p - T - P$ разных представителей гомологического ряда нормальных алканов показал их подобие и возможность «совмещения». Это и было успешно сделано уже с использованием аналитических методов.

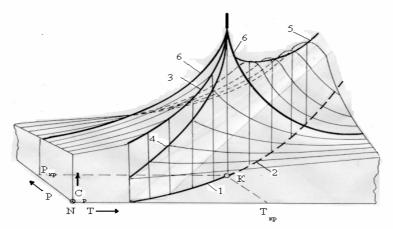


Рис. 1 Термодинамическая $C_p - T - P$ поверхность нормального алкана (косоугольная фронтальная изометрия):

(косоугольная фронтальная изометрия).
 I — пограничная кривая; 2 — линия $T_{\rm M}$; 3 — линия C_p^{-1} на жидкостной ветви пограничной кривой; 4 — линия C_p^{-1} на газовой ветви пограничной кривой; 5 — линия максимумов $C_{\rm pM}$ в сверхкритической области; 6 — критическая изобара C_p ; K — критическая точка; N — точка начала отсчета свойств (P = 0,1 МПа; T = 298,15 K)