С.Г. Толстых, С.В. Пономарев

ПОИСК ОПТИМАЛЬНЫХ ПАРАМЕТРОВ МЕТОДА ИЗМЕРЕНИЯ КОЭФФИЦИЕНТА ДИФФУЗИИ ВЛАГИ В КАПИЛЛЯРНО-ПОРИСТЫХ И КОЛЛОИДНЫХ МАТЕРИАЛАХ

В работах [1-2] сформулированы основные результаты разработки метода измерения коэффициента диффузии влаги в капиллярно-пористых и коллоидных материалах (КПКМ):

- двухэтапная физическая модель эксперимента, в соответствии с которой три образца прямоугольной формы выдерживаются в эксикаторах для достижения равномерного распределения влаги по их объему (№ 1 — увлажняется, № 2 и № 3 — сушатся, в образце № 2 на расстоянии x от поверхности контакта образцов заранее монтируется гальванопара Zn—Cu, имеющая монотонную зависимость гальвано-ЭДС от влагосодержания); на первом этапе эксперимента приводятся в плотное соприкосновение образцы № 1 и № 2, влагосодержание в последнем возрастает; на втором этапе образец № 1 заменяется на образец № 3, влагосодержание в образце № 2 продолжает некоторое время возрастать, а затем падает;
- математическая модель процесса влагопереноса в образцах из исследуемого материала, основанная на линейном уравнении диффузии и используемая для нахождения коэффициента диффузии a_m по времени $\tau_{2\max}$ наступления максимального влагосодержания U_2 в образце $N \ge 2$ на втором этапе эксперимента;
- оценка относительной погрешности δa_m измерения коэффициента диффузии влаги по предлагаемому методу.

ОТНОСИТЕЛЬНАЯ ПОГРЕШНОСТЬ ИЗМЕРЕНИЯ δa_m ЯВЛЯЕТСЯ ФУНКЦИЕЙ КОНСТРУКТИВНОГО И РЕЖИМНОГО ПАРАМЕТРОВ: x И τ_{1k} . РАСЧЕТЫ НА ЭВМ ПОКАЗАЛИ,

ЧТО ПРИ МОНОТОННОМ УВЕЛИЧЕНИИ ПАРАМЕТРОВ x И τ_{1k} ПРОИСХОДИТ АСИМ-ПТОТИЧЕСКОЕ УМЕНЬШЕНИЕ $\delta a_m \to 0$, ПОЭТОМУ ДЛЯ ОБОСНОВАННОГО ВЫБОРА КОНКРЕТНЫХ ЗНАЧЕНИЙ ИСКОМЫХ ПАРАМЕТРОВ ЭКСПЕРИМЕНТА НЕОБХОДИМО НАЙТИ СНАЧАЛА ОБЛАСТЬ ИХ ВОЗМОЖНОГО ИЗМЕНЕНИЯ, А ЗАТЕМ ВЫБРАТЬ ТОЧКУ С МАКСИМАЛЬНЫМИ x И τ_{1k} НА ГРАНИЦЕ ЭТОЙ ОБЛАСТИ. БЫЛИ ПРЕДЛОЖЕНЫ ВСПОМОГАТЕЛЬНЫЕ КРИТЕРИИ ОПТИМИЗАЦИИ, ПО СОВОКУПНОСТИ КОТОРЫХ ПРОИЗВОДИТСЯ РЕШЕНИЕ МНОГОКРИТЕРИАЛЬНОЙ ЗАДАЧИ. В РЕЗУЛЬТАТЕ ОБРАЗУЕТСЯ ОБЛАСТЬ КОМПРОМИССНЫХ (ПАРЕТООПТИМАЛЬНЫХ) РЕШЕНИЙ. ИМЕННО В ЭТОЙ ОБЛАСТИ И ПРОИЗВОДИТСЯ ОКОНЧАТЕЛЬНЫЙ ВЫБОР ОПТИМАЛЬНЫХ РЕЖИМНЫХ И КОНСТРУКТИВНЫХ ПАРАМЕТРОВ ЭКСПЕРИМЕНТА ПО МИНИМУМУ δa_m .

Первый вспомогательный критерий — среднеквадратичное отклонение коэффициента диффузии. Полагаем, что коэффициент диффузии нам известен и требуется найти такие параметры эксперимента, которые обеспечивают максимальную воспроизводимость измерений. Производится компьютерная имитация однотипных экспериментов с наложением случайных помех на параметры эксперимента.

ПОСТАНОВКА ЗАДАЧИ ОПТИМИЗАЦИИ ПО СРЕДНЕКВАДРАТИЧНОМУ ОТКЛОНЕНИЮ ИМЕЕТ ВИД

$$\sigma a_m = \sqrt{\frac{1}{N-1} \sum_{i=1}^{N} \left(\tilde{a}_m^{(i)} - \frac{1}{N} \sum_{j=1}^{N} \tilde{a}_m^{(j)} \right)^2} \xrightarrow{\tau_{1k}, x} \min,$$
 (1)

ГДЕ $\widetilde{a}_{m}^{(i)} = F\left(\widetilde{\tau}_{2\max}^{(i)},\widetilde{\tau}_{1k}^{(i)},\widetilde{x}^{(i)}\right)$ — КОЭФФИЦИЕНТ ДИФФУЗИИ, ВЫЧИСЛЯЕМЫЙ АЛГОРИТМИЧЕСКИ [1]; $\widetilde{\tau}_{1k}^{(i)} = \tau_{1k} + \varsigma^{(i)}(\tau_{1k},\Delta\tau_{1k})$ И $\widetilde{x}^{(i)} = x + \varsigma^{(i)}(x,\Delta x)$ — СООТВЕТСТВЕННО, ЗНАЧЕНИЯ ПЕРЕМЕННЫХ τ_{1k} И x СО СЛУЧАЙНЫМИ ПОМЕХАМИ; $\varsigma(\mu,\sigma)$ — ГЕНЕРАТОР НОРМАЛЬНОРАСПРЕДЕЛЕННЫХ СЛУЧАЙНЫХ ЧИСЕЛ С МАТЕМАТИЧЕСКИМ ОЖИДАНИЕМ μ И СРЕДНЕКВАДРАТИЧНЫМ ОТКЛОНЕНИЕМ σ ; i — НОМЕР ВЫЧИСЛИТЕЛЬНОГО ЭКСПЕРИМЕНТА; $\Delta\tau_{1k}$ И Δx — АБСОЛЮТНЫЕ ПОГРЕШНОСТИ СООТВЕТСТВУЮЩИХ НЕПОСРЕДСТВЕННО ИЗМЕРЯЕМЫХ ВЕЛИЧИН; $\widetilde{\tau}_{2\max}^{(i)}$ — ВЕЛИЧИНА, ПОЛУЧЕННАЯ ПУТЕМ КОМПЬЮТЕРНОЙ ИМИТАЦИИ I-ГО ЭКСПЕРИМЕНТА С ПАРАМЕТРАМИ $\widetilde{\tau}_{1k}^{(i)}$ И $\widetilde{x}^{(i)}$ ПРИ ИЗВЕСТНОМ a_m .

СЛЕДУЮЩИЕ ТРИ ВСПОМОГАТЕЛЬНЫХ КРИТЕРИЯ, НИЖЕ ОБОЗНАЧЕННЫЕ СООТ-ВЕТСТВЕННО (2), (3) И (4), ПОЛУЧИЛИ НАЗВАНИЯ КРИТЕРИЕВ "ИНФОРМАТИВНО-СТИ", "НАБЛЮДАЕМОСТИ" И "СОПОСТАВИМОСТИ ВРЕМЕН" [3]:

$$J(\tau_{1k}, x) = -\frac{\partial^{2}\theta(Fo_{2}; Fo_{1k}(\tau_{1k}, x))}{\partial Fo_{2}^{2}} \Big|_{Fo_{2} = Fo_{2} \text{max}} \times$$

$$\times \int_{0}^{Fo_{2} \text{max}} [\theta(\xi; Fo_{1k}(\tau_{1k}, x)) - \theta(0; Fo_{1k}(\tau_{1k}, x))] d\xi \xrightarrow{\tau_{1k}, x} \text{max};$$

$$S(\tau_{1k}, x) = -\frac{\partial^{2}\theta(Fo_{2}; Fo_{1k}(\tau_{1k}, x))}{\partial Fo_{2}^{2}} \Big|_{Fo_{2} = Fo_{2} \text{max}} \times$$

$$\times \min\{ [\theta(Fo_{2} \text{max}; Fo_{1k}(\tau_{1k}, x)) - \theta(0; Fo_{1k}(\tau_{1k}, x))]^{2}, Fo_{2}^{2} \text{max} \} \xrightarrow{\tau_{1k}, x} \text{max};$$

$$E_{S}(\tau_{1k}, x) = \frac{\tau_{2} \text{max}(\tau_{1k}, x)}{\tau_{\text{exp}}(\tau_{1k}, x)} \int_{0}^{a\tau_{R}/x^{2}} \left[\frac{\theta(\xi; Fo_{1k}(\tau_{1k}, x))}{-\theta(0; Fo_{1k}(\tau_{1k}, x))} \right] d\xi \xrightarrow{\tau_{1k}, x} \text{max}.$$

$$($$

$$($$

$$($$

$$($$

$$)$$

$$($$

$$($$

$$)$$

$$($$

$$($$

$$)$$

$$($$

$$($$

$$)$$

$$($$

$$)$$

$$($$

$$)$$

$$($$

$$)$$

$$($$

$$)$$

$$($$

$$)$$

$$($$

$$)$$

$$($$

$$)$$

$$($$

$$)$$

$$($$

$$)$$

$$($$

$$)$$

$$($$

$$)$$

$$($$

$$)$$

$$($$

$$)$$

$$($$

$$)$$

$$($$

$$)$$

$$($$

$$)$$

$$($$

$$)$$

$$($$

$$)$$

$$($$

$$)$$

$$($$

$$)$$

$$($$

$$)$$

$$($$

$$)$$

$$($$

$$)$$

$$($$

$$)$$

$$($$

$$)$$

$$($$

$$)$$

$$($$

$$)$$

$$($$

$$)$$

$$($$

$$)$$

$$($$

$$)$$

$$($$

$$)$$

$$($$

$$)$$

$$($$

$$)$$

$$($$

$$)$$

$$($$

$$)$$

$$($$

$$)$$

$$($$

$$)$$

$$($$

$$)$$

$$($$

$$)$$

$$($$

$$)$$

$$($$

$$)$$

$$($$

$$)$$

$$($$

$$)$$

$$($$

$$)$$

$$($$

$$)$$

$$($$

$$)$$

$$($$

$$)$$

$$($$

$$)$$

$$($$

$$)$$

$$($$

$$)$$

$$($$

$$)$$

$$($$

$$)$$

$$($$

$$)$$

$$($$

$$)$$

$$($$

$$)$$

$$($$

$$)$$

$$($$

$$)$$

$$($$

$$)$$

$$($$

$$)$$

$$($$

$$)$$

$$($$

$$)$$

$$($$

$$)$$

$$($$

$$)$$

$$($$

$$)$$

$$($$

$$)$$

$$($$

$$)$$

$$($$

$$)$$

$$($$

$$)$$

$$($$

$$)$$

$$($$

$$)$$

$$($$

$$)$$

$$($$

$$)$$

$$($$

$$)$$

$$($$

$$)$$

$$($$

$$)$$

$$($$

$$)$$

$$($$

$$)$$

$$($$

$$)$$

$$($$

$$)$$

$$($$

$$)$$

$$($$

$$)$$

$$($$

$$)$$

$$($$

$$)$$

$$($$

$$)$$

$$($$

$$)$$

$$($$

$$)$$

$$($$

$$)$$

$$($$

$$)$$

$$($$

$$)$$

$$($$

$$)$$

$$($$

$$)$$

$$($$

$$)$$

$$($$

$$)$$

$$($$

$$)$$

$$($$

$$)$$

$$($$

$$)$$

$$($$

$$)$$

$$($$

$$)$$

$$($$

$$)$$

$$($$

$$)$$

$$($$

$$)$$

$$($$

$$)$$

$$($$

$$)$$

$$($$

$$)$$

$$($$

$$)$$

$$($$

$$)$$

$$($$

$$)$$

$$($$

$$)$$

$$($$

$$)$$

$$($$

$$)$$

$$($$

$$)$$

$$($$

$$)$$

$$($$

$$)$$

$$($$

$$)$$

$$($$

$$)$$

$$($$

$$)$$

$$($$

$$)$$

$$($$

$$)$$

$$($$

$$)$$

$$($$

$$)$$

$$($$

$$)$$

$$($$

$$)$$

$$($$

$$)$$

$$($$

$$)$$

$$($$

$$)$$

$$($$

$$)$$

$$($$

$$)$$

$$($$

$$)$$

$$($$

$$)$$

$$($$

$$)$$

$$($$

$$)$$

$$($$

$$)$$

$$($$

$$)$$

$$($$

$$)$$

$$($$

$$)$$

$$($$

$$)$$

$$($$

$$)$$

$$($$

$$)$$

$$($$

$$)$$

$$($$

$$)$$

$$($$

$$)$$

$$($$

$$)$$

$$($$

$$)$$

$$($$

$$)$$

$$($$

$$)$$

$$($$

$$)$$

$$($$

$$)$$

$$($$

$$)$$

$$($$

$$)$$

$$($$

$$)$$

$$($$

$$)$$

$$($$

$$)$$

$$($$

$$)$$

$$($$

$$)$$

$$($$

$$)$$

$$($$

$$)$$

$$($$

$$)$$

$$($$

$$)$$

$$($$

$$)$$

$$($$

$$)$$

$$($$

$$)$$

$$($$

$$)$$

$$($$

$$)$$

$$($$

$$)$$

$$($$

$$)$$

$$($$

$$)$$

$$($$

$$)$$

$$($$

$$)$$

$$($$

$$)$$

$$($$

$$)$$

$$($$

$$)$$

$$($$

$$)$$

$$($$

$$)$$

$$($$

В ФОРМУЛАХ (2) – (4) ИСПОЛЬЗУЮТСЯ: $Fo = a\tau/x^2$ – ЧИСЛО ФУРЬЕ (С СООТВЕТСТ-ВУЮЩИМИ ИНДЕКСАМИ); $\tau_{\rm exp}$ – ОБЩЕЕ ВРЕМЯ АКТИВНОЙ СТАДИИ ЭКСПЕРИМЕНТА; θ – БЕЗРАЗМЕРНОЕ ВЛАГОСОДЕРЖАНИЕ. ПЕРВЫЕ ДВА КРИТЕРИЯ СЛУЖАТ ДЛЯ ОТСЕВА ТАКИХ СОЧЕТАНИЙ ВАРЬИРУЕМЫХ ПАРАМЕТРОВ, ПРИ КОТОРЫХ МАКСИМУМ ГАЛЬВАНО-ЭДС СОДЕРЖИТ МАЛО ПОЛЕЗНОЙ ИНФОРМАЦИИ (ИЗЛИШНЕ РАН-

НИЙ ИЛИ ПОЗДНИЙ: КРИТЕРИЙ (2)), СЛАБО ВЫРАЖЕННЫЙ (КРИТЕРИЙ (3)). КРИТЕРИЙ (4) СПОСОБСТВУЕТ СОКРАЩЕНИЮ ВРЕМЕНИ АКТИВНОЙ СТАДИИ ЭКСПЕРИМЕНТА $\tau_{\rm exp} = \tau_{1k} + (\tau_2 : U_2(\tau_2) = U_2(0))$.

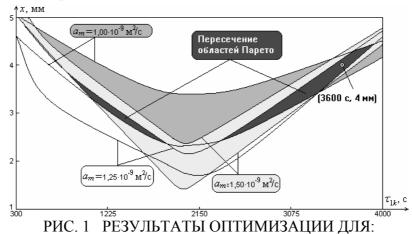
РЕШЕНИЯ ЗАДАЧ (1) – (4) ДЛЯ $a_m = 1 \cdot 10^{-9} \,\mathrm{M}^2/\mathrm{C}$ ПОМЕЩЕНЫ В ТАБЛ. 1.

1 РЕЗУЛЬТАТЫ ОПТИМИЗАЦИИ ПО КРИТЕРИЯМ (1) – (4)

τ_{1k}^* , c	x^* , MM	$\sigma a_m \cdot 10^{10}$	$J \cdot 10^3$	$S \cdot 10^3$	$E_S \cdot 10^3$
1049	1,84	0,789923	10,4691	8,0327	2,4097
1050	2,24	0,796417	19,3266	8,3458	4,9483
675	2,25	2,865127	3,7812	1,75205	3,0873
750	2,23	0,810796	11,0364	10,3212	6,0234

ИССЛЕДОВАНИЯ НА ЭВМ ПОКАЗАЛИ, ЧТО КРИТЕРИИ (1) – (4) ЯВЛЯЮТСЯ СЛОЖНО-ЗАВИСИМЫМИ И КОНКУРИРУЮЩИМИ. ЭТО ПОДТВЕРЖДАЕТ ВОЗМОЖНОСТЬ ОБЪЕ-ДИНЕНИЯ ИХ В ВЕКТОРНЫЙ КРИТЕРИЙ. РЕШАЕТСЯ СЛЕДУЮЩАЯ ЗАДАЧИ МНОГО-КРИТЕРИАЛЬНОЙ ОПТИМИЗАЦИИ

$$\begin{cases}
\sigma_{a_{m}}(\tau_{1k}, x) & \xrightarrow{\tau_{1k}, x} \text{min;} \\
-J(\tau_{1k}, x) & \xrightarrow{\tau_{1k}, x} \text{min;} \\
-S(\tau_{1k}, x) & \xrightarrow{\tau_{1k}, x} \text{min;} \\
-E_{S}(\tau_{1k}, x) & \xrightarrow{\tau_{1k}, x} \text{min;} \\
\tau_{\exp}(\tau_{1k}, x) \leq \tau_{\exp, \max}; \\
\tau_{1k, \min} \leq \tau_{1k} \leq \tau_{1k, \max}; \\
x_{\min} \leq x \leq x_{\max}.
\end{cases} (5)$$



 $a \in [1,0 \cdot 10^{-9}...1,5 \cdot 10^{-9}]$ M²/C, $\tau_{\text{exp,max}} = 3.24.3600$ C, $\tau_{1k,\text{min}} = 300$ C, $\tau_{1k,\text{max}} = 2000$ C, $x_{\text{min}} = 1$ MM, $x_{\text{max}} = 5$ MM

Для нахождения приближенного решения задачи (5) в виде множества Парето использовалось равнообъемное заполнение пространства допустимых решений [$\tau_{lk,\text{min}}$, $\tau_{lk,\text{max}}$]×[x_{min} , x_{max}] точками LP_{τ} – последовательности с итерационным отсевом наименее перспективных вариантов. Решение задачи (5) проводилось для диапазона измерения коэффициента диффузии, свойственного древесным породам средней полосы России. Было получено пересечение множеств Парето, где любая точка (τ_{lk} ,x) по отношению к любой другой из этой области – равно приоритетная для диапазона измерения коэффициента диффузии (рис. 1).

Список Литературы

1 Толстых С.Г. Математическая модель метода измерения коэффициента диффузии // Труды ТГТУ: Сб. науч. ст. молодых ученых и студентов. Тамбов: Изд-во Тамб. гос. техн. ун-та, 2001. Вып. 8. С. 3 – 11.

2 Мищенко С.В., Пономарев С.В., Толстых С.Г., Толстых С.С. К вопросу о погрешностях измерения коэффициента диффузии пористых материалов // Вестник Тамбовского государственного технического университета, 2003. Т. 9. № 2. С. 150 – 165.

ского государственного технического университета, 2003. 1. 9. № 2. С. 150 – 165.

3 Толстых С.Г., Толстых С.С., Пономарев С.В. Метрологическая оптимизация параметров эксперимента по определению коэффициента диффузии влаги в капиллярно-пористых материалах // Деп. в

Кафедра "Автоматизированные системы и приборы"

ВИНИТИ 21.04.04 № 667 – В2004.