А.В. Кострикин, И.В. Линько, О.В. Косенкова, П.А. Кострикин

ГИДРАТИРОВАННЫЙ ДИОКСИД ГЕРМАНИЯ

Вопрос о существовании гидратированного диоксида германия к настоящему времени окончательно не решен. Один из методов его получения – гидролиз галогенидных соединений германия. Однако продукт гидролиза тетрахлорида GeCl₄ представляет собой смесь гексагональной и аморфной модификации GeO₂ и содержит до 30 масс. % воды [1]. По данным [2], где гидратированный диоксид германия готовили из коммерческого GeO₂, растворением его в воде с последующим выпариванием раствора, содержание воды в осадках изменяется в пределах 0,7...3,5 масс. %. В то же время в [3] констатируется постепенное и полное удаление воды из состава GeO₂ · nH₂O на воздухе. Однако в [1] отмечено, что даже после нагревания до 380 °C в течение 12 часов в образцах GeO₂ · nH₂O сохраняется 0,3 масс. % воды. В [4] найдено, что образцы GeO₂ · nH₂O, прогретые до 300 °C, обладают максимальной сорбционной способностью по отношению к парам воды.

Таким образом, в литературе нет единого мнения относительно состава гидратированного диоксида германия, не изучены также и особенности его дегидратации.

Цель настоящей работы синтезировать гидратированный диоксид германия, изучить его физикохимические свойства и особенности дегидратации при нагревании.

Гидратированный диоксид германия готовили растворением коммерческого образца GeO₂ (гексагональная модификация) в горячей воде, с последующим выпариванием истинного раствора при 50 °C. Выпаривание производили в тефлоновых стаканах. Гидратированный диоксид германия выпадал на дне и стенках сосуда в виде корки. Согласно данным кристаллооптического анализа (поляризационный микроскоп МИН-8), осадок представлен мелкими бесцветными пластинчатыми кристаллами, анизотропными с показателем преломления n > 1,60.

Химический анализ (выполнен по известным методикам [5]) позволил определить их состав как GeO₂ · 0,1H₂O.

Ренгенофазный анализ выполнен по рентгенодифракционным спектрам образцов, записанным на приборе ДРОН-3М, СоК_{α} – излучение, *Fe*_{β} – фильтр (режим сканирования по точкам, шаг сканирования 0,05...0,1 ° θ , время сканирования в точке 3...10 с), метод порошка. Набор дифракционных максимумов, наблюдаемых в рентгенограммах, полностью отвечает таковому исходного коммерческого соединения.

Термогравиметрические исследования выполнены на дериватографе марки Q-1500Д, нагрев на воздухе в динамическом режиме, скорость нагрева 10 град/мин до 1000 °С, использовали открытый платиновый тигель, эталон – свежепрокаленный Al₂O₃, навеска образца 200 мг, чувствительность весовой шкалы 100 мг, ДТГ – 250 мВ, ДТА – 250 мВ и в квазиизотермических условиях: нагрев на воздухе до 1000 °С, навеска 200 мг, чувствительность весовой шкалы 100 мг, скорость разложения 0,4 мг/мин, держатель пробы – закрытый конический платиновый тигель.

Дегидратация образца в динамическом режиме наблюдается в широком температурном интервале 50...705 °С в одну ступень. Надежно зафиксировать какие-либо максимумы или минимумы на кривых ДТА и ДТГ, указывающих на изменение скорости разложения или теплосодержания в системе не представляется возможным.

Рис. 1. Термогравиграмма GeO2·0,1H2O в квазиизотермических условиях

Нагревание образца в квазиизотермических условиях позволяет констатировать удаление воды в две стадии. В интервале 55...425 °C из состава соединения удаляется 0,03 моль воды, а при температуре 425...780 °C – еще 0,01 моль воды. Характер хода кривой потери в массе в квазиизотермических условиях (рис. 1) позволяет констатировать, что процесс термолиза осуществляется, кроме того, и в результате поликонденсации = GeOH групп. Наблюдаемые две стадии термолиза, фактически, следовых количеств воды могут быть обусловлены следующим. При температуре близкой к наблюдаемой (420 °C) отмечается переход гексагональной модификации в тетрагональную [6, 7]. Таким образом, вторая стадия дегидратации, зафиксированная в квазиизотермических условиях нагревания, наиболее вероятно, обусловлена поликонденсацией следовых количеств ОН-групп в составе новообразовавшейся тетрагональной модификации. Небольшое увеличение массы, отмечающееся при температурах превышающих 720 °C (рис. 1), может быть связано с адсорбцией паров воды продуктами термолиза. Этим же процессом (адсорбцией паров воды продуктами термолиза) объясняется различие в удалении количеств воды в динамическом режиме и квазиизотермических условиях.

Для получения данных о строении $\text{GeO}_2 \cdot 0.1\text{H}_2\text{O}$ и продуктов его термолиза, формах воды в его составе и особенностях дегидратации были записаны ИК спектры поглощения $\text{GeO}_2 \cdot 0.1\text{H}_2\text{O}$ и продуктов термолиза, выделенных нагреванием исходного образца в течение одного часа при температурах 120, 200 и 1000 °C. ИК спектры поглощения записаны на приборе Specord M82 в области 4000...300 см⁻¹. Образцы готовили в матрице из бромида калия. Наблюдаемые максимумы полос поглощения, их относительные интенсивности и отнесение (выполнено на основании данных [8 – 17]) сведены в таблицу, где также приводятся данные ИК спектра коммерческого образца GeO₂. Необходимо отметить, что характер спектра коммерческого образца полностью соответствует таковому продукта термолиза GeO₂ $\cdot 0.1\text{H}_2\text{O}$, выделенного при 200 °C.

В ИК спектрах всех образцов присутствует ряд полос поглощения обусловленных валентными колебаниями v (OH) как свободных OH-групп (максимум поглощения около 3730 см⁻¹ [8]), так и принимающих участие в водородном связывании различной интенсивности [9]. В области колебаний δ (H₂O) наблюдаются слабые полосы поглощения, обусловленные присутствием в структурах GeO₂ · 0,1H₂O и продуктов термолиза молекул воды. Отметим присутствие в спектрах GeO₂ · 0,1H₂O и продукта его термолиза при 120 °C полос поглощения с максимумами 1768 и 1687 см⁻¹, соответственно. В этих же спектрах в области поглощения v (OH) наблюдаются полосы с максимумами 2920 и 2913 см⁻¹. Совместное присутствие указанных полос в спектрах GeO₂ · 0,1H₂O и продукта его термолиза при 120 °C обусловлено ионами H₃O⁺ [18], которые, вполне вероятно, входят в структуру названных образцов.

Максимумы полос поглощения (см⁻¹), их интенсивность и отнесение в ИК спектрах GeO₂·0,1H₂O и продуктах его термолиза, выделенных при различных температурах

Температура нагревания, °С				Отнесение
50	120	200	1000	
3735 сл.	3734 сл.		3734 сл.	
3618 сл.	3614 сл.		3637 сл.	
		3510 ол	3537 сл.	1
		5519 сл.	3535 сл.	
3/16 cm	3/35 cm	3482 cp.	3482 сл.	
5440 Cp.	5455 Cp.	3458 cp.	3446 сл.	ν(OH)
	3379 ср.	3399 cn	3389 сл	
	3319 cp.	5577 Cp.	5567 сл.	1
3259 ср.	3270 cp.	3236 сл.		
3184 cp.	3146 сл.		3181 сл.	
3051 сл.	3028 сл.			
2938 сл.	2913 сл.	2953 сл.		
1676 сл.	1687 сл.			$\delta(H_3O^+)$
1638о.c л.	1650 сл.	1634 о.сл.	1640 сл.	δ(H ₂ O)
1515 сл.	1541 сл.	1536 сл.	1530 сл.	1
	1507 сл.		1457	$\left \right\rangle$ $2 \times (G_{2} O)$
1423 сл.	1454 сл.	1415 сл.	145 / сл. 1426 от	20(000)
1220 от	1217 от	1222 от	1450 CJI.	
1320 CJI.	1317 CJI.	1323 сл.	1525 CJI.	
1209 C.	1221 cp.	1245 IIJI.	1227 IIJI.	ן
		1162 ПЛ. 1102 пл		δ(GeOH)
1065 пл	1075 пл	102 пл.	1050 пл	J
1005 II.I.	1075 11.	1038 IIJI.	1039 IIJI.	
966 пл.	973 c.	900 C.	9/1 C.	
	895 o o	923 IIJI.	930 IIJI.	· ,
881.0.0	862 0.0	877 0.C. 828 मन	878 0.0	
001 0.0.	802 0.с. 836 пл	828 пл. 802 пл	070 0. c .	γ (GeO)
	050 11,1.	002 IIJI.	785 пл	
718 пл	757 пл.	779 пл.	785 пл. 746 пл	J
/10 11,11	728 пл.	707 пл.	723 c	
682 пл.	676 пл.	667 пл.	, 23 с. 693 пл.	
581 c.	595 пл.	577 c.	584 c.	
546 c.	566 c.	555 c.	551 c.	$\left\{ \nu_{s}(\text{GeOGe})\right\}$
515 c.	517 c.	515 c.	511 c.	
450 пл.	466 c.	468 пл. 441 пл.	460 пл.	δ(OGeO)

В области поглощения колебаний δ(GeOH) наблюдается ряд слабых полос, интенсивность которых с увеличением температуры нагревания уменьшается, что указывает на присутствие в образцах групп ≡ GeOH.

В области поглощения колебаний v(GeO) и v(GeOGe) наблюдается ряд сильных полос поглощения обусловленных присутствием цепочек германий – кислотных тетраэдров.

Отметим, что область проявления v(OH) в продукте термолиза, выделенном при 1000 °C приблизительно на 200 см⁻¹ уже, чем в спектре исходного образца GeO₂·0,1H₂O, что указывает на меньшее разнообразие в интенсивности взаимодействия молекул воды и OH-групп в структуре продукта термолиза по сравнению с исходным образцом.

Таким образом, основываясь на ИК спектроскопическом исследовании GeO₂ · 0,1H₂O и продуктов его термолиза можно констатировать присутствие в структурах соединений наравне с германий-кислород-

ными тетраэдрами групп = GeOH и молекул воды, а в $GeO_2 \cdot 0, 1H_2O$ и продукте термолиза выделенном при 120 °C еще и ионов гидроксония H_3O^+ . Последние не отмечены в соединениях, выделенных при более высоких температурах, что вполне объясняется уменьшением числа молекул воды в результате дегидратации. Необходимо также констатировать адсорбцию воды продуктами термолиза.

В результате исследования можно сделать выводы:

1) гидратированный диоксид германия GeO₂·0,1H₂O представляет собой гидратированные и гидроксилированные кристаллы гексагональной модификации GeO₂;

2) часть молекул воды взаимодействуют с элементами кристаллической решетки, образуя ионы H_3O^+ ;

3) при нагревании соединения на процесс дегидратации накладывается полиморфный переход GeO₂(гексагон) → GeO₂(тетрагон), что обуславливает две стадии дегидратации – молекулы воды удаляются из структур разных кристаллических модификаций.

СПИСОК ЛИТЕРАТУРЫ

1. Тананаев, И.В. Химия германия / И.В. Тананаев, М.Я. Шпирт. – М. : Химия, 1967. – 452 с.

2. Pietri M.A., Haladjian J., Perinet G., Carpeni G. // Bull. Soc. Chim. - France, 1960. - P. 1909 - 1914.

3. Реми, Г. Курс неорганической химии / Г. Реми. – М. : Мир, 1972. – Т. 1. – 842 с.

Прудников Р.В., Киселев В.Ф., Егоров М.М. // Доклады АН СССР. – 1966. – Т. 166, № 2. – С. 395 – 398.

5. Практическое руководство по неорганическому анализу / В.Ф. Гиллебрандт, Г.Э. Лендель, Г.А. Брайт, Д.И. Гофман. – М. : Химия, 1966. – 1112 с.

6. Schwarz R., Huf E. // Z. Anorg. Allg. Chem. – 1932. – B. 203. – S. 188.

7. Schwarz R., Haschke S. // Z. Anorg. Allg. Chem. - 1943. - B. 252. - S. 170.

8. Кострикин, А.В. Дис. ... канд. хим. наук / А.В. Кострикин. – М. : МГПИ им. В.И. Ленина, 1988. – 182 с.

9. Иванов-Эмин Б.Н., Зайцев Б.Е., Кострикин А.В., Линько И.В., Ежов А.И. // Журнал неорганической химии. – 1988. – Т. 33, вып. 11. – С. 2791 – 2797.

10. Лазарев А.Н., Тенишева Т.Ф. // Оптика и спектроскопия. – 1961. – Т. 10, вып. 1. – С. 79 – 85.

11. Рыскин, Я.И. Водородная связь и структура силикатов / Я.И. Рыскин, Г.Г. Ставицкая. – Л. : Наука, 1972. – 164 с.

12. Tarte P., Ringwood A.E. // Nature. - 1964. - Vol. 201. - N 4921. - P. 819.

13. Lippincott R., Valkenburg A.V., Weir C.E., Bunfig E.N. // J. Res. Nat. Bur. Stand. – 1958. – Vol. 61. – P. 61 – 70.

14. Демьянец, Л.Н. Германаты редкоземельных элементов / Л.Н. Демьянец, А.Н. Лобачев, Г.А. Емельченко. – М. : Наука, 1980. – 152 с.

15. Князев Е.А. // Журнал неорганической химии. – 1978. – Т. 23, вып. 5. – С. 1411–1412.

16. Ставицкая Г.П., Рыскин Я.И. // Оптика и спектроскопия. – 1961. – Т. 10, № 3. – С. 343 – 347.

17. Jezowska-Trzebiatowska B., Hanuza J., Wojciechowski W. // Spectrochim. Acta.- 1967. - Vol. 23A. - P. 2631 - 2636.

18. Макатун, В.Н. Химия неорганических гидратов / В.Н. Макатун. – Минск : Наука и техника, 1985. – 216 с.

Мичуринский государственный педагогический институт, Российский университет дружбы народов. Москва, Мичуринский государственный аграрный университет