УДК 620.1.08

А.В. Медведева*

АЭРОДИНАМИЧЕСКОЕ ВЗАИМОДЕЙСТВИЕ ГАЗА С ПОРИСТЫМИ СЫПУЧИМИ МАТЕРИАЛАМИ

Анализ конструкций измерительных элементов, реализующих методы контроля плотности, основанные на струйном взаимодействии газа с контролируемым веществом, позволил выделить обобщенную

^{*} Работа выполнена под руководством д-ра техн. наук, проф. ГОУ ВПО ТГТУ Д.М. Мордасова.

структуру измерительного элемента в виде проточной пневматической камеры.

Конструктивно такой измерительный элемент представляет собой трубку, заполненную сыпучим материалом, к нижнему срезу которой подводят поток газа, а верхний – остается открытым и соединен с атмосферой (рис. 1).

Рис. 1. Структура измерительного элемента, применяемого при струйном взаимодействии газа с сыпучим материалом (P_{вх}, Q_{вх} – давление и объемный расход газа на входе)

Процессы, происходящие в измерительном элементе целесообразно рассматривать с позиций энергетического взаимодействия газовой струи с контролируемым веществом. При этом математическое описание представляет собой совокупность уравнений:

$$E = \pi R_{\rm Tp}^2 \rho_{\rm r} W^2 h_0;$$

$$E_{\rm A} = (\rho_{\rm B} - \rho_{\rm r}) g V_{\rm TB} h_0;$$

$$E_{\rm II} = \frac{S^2 W h_0}{\alpha_3};$$

$$E = E_{\rm A} + E_{\rm II},$$

(1)

где E – энергия струи газа; E_A – гравитационная энергия; $E_{\rm n}$ – поверхностная энергия; $R_{\rm тp}$ – радиус газоподводящей трубки (сопла); W – скорость газа в выходном сечении трубки (сопла); $\rho_{\rm B}$ – плотность вещества; $\rho_{\rm r}$ – плотность газовой фазы; g – ускорение свободного падения; h_0 – высота неподвижного слоя сыпучего материала; $V_{\rm TB}$ – объем твердой фазы в слое сыпучего материала; S – площадь проходного сечения измерительной емкости с сыпучим материалом; α_9 – эквивалентная проводимость слоя сыпучего материала.

На перемещение сыпучего материала и преодоление гравитационной силы затрачивается энергия E_A , определяемая вторым уравнением математического описания (1). Энергия газовой струи затрачивается на фильтрование и определяется третьим уравнением математического описания (1).

До момента псевдоожижения перепад давления ΔP_1 на слое высотой h_0 определяется уравнением

$$\Delta P_1 = \frac{SW}{\alpha_9} = \frac{Q}{\alpha_9}, \qquad (2)$$

где Q – объемный расход газа.

С учетом (2) третье уравнение математического описания (1) примет вид

$$E_{\Pi} = \Delta P_1 S h_0. \tag{3}$$

Газовая фаза между частицами сыпучего материала может быть представлена совокупностью условных газовых каналов, проводимость которых согласно уравнению Пуазейля определяется в виде

$$\alpha_i = \frac{\pi d_i^4}{128\eta l_i},$$

где η – динамическая вязкость газа; d_i , l_i – диаметр и длина условного газового канала.

С учетом параллельного соединения газовых каналов эквивалентная проводимость слоя сыпучего материала определяется уравнением

$$\alpha_{9} = \frac{V_{\Gamma}^{2}S^{2}}{8\pi n\eta h_{0}V_{0}^{2}} = \frac{S^{2}}{8\pi n\eta h_{0}} \cdot \varepsilon_{0}^{2}, \qquad (4)$$

где n – число условных газовых каналов; V_r – объем газовой фазы в слое сыпучего материала; V_0 – объем, занимаемый сыпучим материалом; ε_0 – концентрация газовой фазы в слое сыпучего материала (порозность).

После подстановки уравнения (4) в (2) получим выражение для определения концентрации газовой фазы в неподвижном слое сыпучего материала:

$$\varepsilon_0 = \sqrt{\frac{8\pi n Q \eta h_0}{S^2 \Delta P_1}}.$$
(5)

Совместное решение уравнений (1) с учетом (3) относительно кажущейся плотности частиц сыпучего материала дает выражение

$$\rho_{\rm B} = \frac{\rho_{\rm F} W^2 - \Delta P_1}{g h_0 (1 - \varepsilon_0)},$$

откуда с учетом $\rho_{\rm r} W^2 - \Delta P_1 = \Delta P_2$ и (5) получим $\rho_{\rm \kappa} = \frac{\Delta P_2}{gh_0 \left(1 - \sqrt{\frac{8\pi n Q \eta h_0}{S^2 \Delta P_1}}\right)},$

где ΔP_2 – перепад давления, соответствующий началу псевдоожижения.

Таким образом, полученное математическое описание процесса аэродинамического взаимодействия газа с пористыми сыпучими материалами может быть положено в основу создания принципиально новых методов экспресс-контроля физико-механических свойств сыпучих материалов, не допускающих смачивания, обладающих высокой развитой поверхностью, а также характеризуемых размерами нанометрового диапазона.

Кафедра «Материалы и технологии» ГОУ ВПО ТГТУ