УДК 621.396.967

А.В. Затылкин*

АНАЛИЗ РАДИОЭЛЕКТРОННЫХ СЛЕДЯЩИХ СИСТЕМ СОВРЕМЕННЫХ АВТОМАТИЗИРОВАННЫХ СИСТЕМ УПРАВЛЕНИЯ ВОЗДУШНЫМ ДВИЖЕНИЕМ

В последние годы все больший интерес представляет разработка автоматизированных систем управления воздушным движением (AC УВД). Одной из важных характеристик таких систем является точность определения положения объекта с учетом большого числа современных навигационных приборов [1]. В современных AC УВД обработка информации в РЭСС основана на использовании информации о входных сигналах и помехах. На основе гипотезы изменения фазовых координат с постоянной скоростью для оценивания дальности и скорости используется следующая модель [2]

$$\begin{aligned} & \left[\mathcal{A}(k+1) = \mathcal{A}(k) + V(k)\tau + \varepsilon_{\alpha}(k); \right] \\ & V(k+1) = V(k), \end{aligned}$$
(1)

где Д(k) и V(k) – дальность до цели и его скорость; τ – интервал дискретизации; $\varepsilon_{\pi}(k)$ – шумы возмущения, учитывающие турбулентность атмосферы; k – время дискретизации. Для получения оптимального коэффициента α – β -фильтра используется следующий алгоритм:

$$P_{3}(k+1) = \Phi(k+1,k) P_{0}(k) \Phi^{T}(k+1,k) + Q_{x}(k); \qquad (2)$$

$$\mathbf{K}_{\phi}(k+1) = \mathbf{P}_{9}(k+1) \,\mathbf{H}^{\mathrm{T}}(k+1) \{\mathbf{H}(k+1) \,\mathbf{P}_{9}(k+1) \,\mathbf{H}^{\mathrm{T}}(k+1)\}; \quad (3)$$

$$P_{o}(k+1) = P_{3}(k+1) - K_{\phi}(k+1)H(k+1)P_{3}(k+1), \qquad (4)$$

где $K_{\phi}(k+1)$ – матрица оптимальных коэффициентов передачи дискретного фильтра; $P_{\sigma}(k+1)$ – апостериорная ковариационная матрица ошибок фильтрации; $P_{\sigma}(k+1)$ – априорная ковариационная матрица ошибок фильтрации; $Q_{x}(k)$ – матрица дисперсий возмущений.

^{*} Работа выполнена под руководством канд. техн. наук, доц. ГОУ ВПО ТГТУ Ю.Н. Панасюка.

На рис. 1, 2 показаны изменения коэффициентов усиления невязок для оценки дальности и скорости $K_{\phi 1}$ и $K_{\phi 2}$ в зависимости от количества отсчетов k (времени фильтрации).

Коэффициенты $K_{\phi 1}$ и $K_{\phi 2}$ определяют оптимальные коэффициенты α - β -фильтра.

Чем меньше коэффициенты α и β, тем лучше сглаживание флуктуационных погрешностей, т.е. уже полоса пропускания фильтра, выше точность.

Однако с уменьшением коэффициентов α и β увеличиваются динамические ошибки, что приводит к снижению устойчивости.

Обычно рассчитывают оптимальные значения коэффициентов α и β, обеспечивающие минимум суммарной (флуктуационной и динамической) ошибки.

Рис. 1. Зависимость коэффициента усиления по дальности от времени фильтрации

Рис. 2. Зависимость коэффициента усиления по скорости от времени фильтрации

С учетом модели (1) получаем:

$$\mathcal{A}_{o}(k+1) = \mathcal{A}_{9}(k+1) + \alpha \Delta \mathcal{A}(k+1);$$
(6)

$$V_{\rm o}(k+1) = V_{\rm o}(k) + \frac{\beta}{\tau} \Delta \mathcal{I}(k+1), V(0) = V_{\rm o};$$
⁽⁷⁾

$$\Delta \Pi(k+1) = \Pi_{\mu} (k+1) - \Pi_{\mu} (k+1), \qquad (8)$$

где $Д_0(k+1)$ и $V_0(k+1)$ – оценка дальности и скорости; $J_3(k)$ и $V_3(k)$ – экстраполированные значения дальности и скорости; $J_u(k)$ – дальность до ЛА, измеряемая по времени запаздывания отраженного сигнала; α и β – коэффициенты усиления фильтра; $J_3(k+1)$ – обновляющий процесс (невязка). Начальные условия J_0 и V_0 для (5) и (6) определяются в режиме захвата воздушного судна [2]. На основании выражений (5), (6) проводилось имитационное моделирование относительного движения цели, измерителя дальности и алгоритма α , β фильтрации на примере сопровождения одной цели типа истребителя при следующих условиях:

В а р и а н т 1: цель не маневрирует (ускорение цели по линии визирования a = 0).

В а р и а н т 2: цель движется равноускоренно (ускорение цели по линии визирования $a = 20 \text{ м/c}^2$).

Вариант 3: цель выполняет маневр «вираж».

На рисунках 3, 4 показано изменение – среднеквадратическая ошибка (СКО) оценки дальности $\sigma_{\rm g}$ и скорости $\sigma_{\rm v}$ от времени для трех вариантов движения цели при следующих начальных условиях: $\Lambda_{\rm o}(0) = \Lambda_{\rm Bc}(0) = 400\,000$ м; $V_{\rm o}(0) = V_{\rm Bc}(0) = -500$ м/с; СКО по дальности на входе фильтра $\sigma_{\rm дu} = 50$ м; коэффициенты $\alpha = 0.5$; $\beta = 0.3$; время дискретизации $\tau = 0.02$ с.

Из графиков (рис. 3, 4) видно, что при одинаковых начальных условиях σ_{d} и σ_{v} для трех вариантов различны. Резкое увеличение σ_{d} и σ_{v} происходит при маневре «вираж» в моменты времени, когда цель движется с интенсивным изменением ускорения. Это связано с увеличением динамических ошибок, так как процесс, описываемый моделью состояния для существующих дальномеров, сильно отличается от наблюдаемого процесса.

Время фильтрации k

Рис. 3. Зависимость СКО скорости от времени фильтрации

Рис. 4. Зависимость СКО дальности от времени фильтрации

Из графиков на рис. 3, 4 видно, что при одинаковых начальных условиях значения σ_{d} и σ_{v} для трех вариантов различны. Резкое их увеличение происходит при маневре «вираж» в моменты времени, когда цель движется с интенсивным изменением ускорения. Это связано с увеличением динамических ошибок, так как процесс, описываемый моделью состояния для существующих дальномеров, сильно отличается от наблюдаемого процесса. Увеличение σ_{d} и σ_{v} происходит на 350-м шаге и может привести к увеличению вероятности пересечения траекторий АС УВД.

Для повышения устойчивости РЭСС необходимо создать фильтр на основе модели процесса, более точно отражающей физическую сущность явления.

СПИСОК ЛИТЕРАТУРЫ

1. Задорожный, А.И. Автоматизированные системы управления полетами и воздушным движением / А.И. Задорожный. – М. : ВВИА им. проф. Н.Е. Жуковского, 1988. – С. 290.

2. Лобачев, Ю.В. Обработка радиолокационной информации в автоматизированных системах управления полетами / Ю.В. Лобачев, Ю.Н. Панасюк, Б.П. Комягин. – Тамбов : ТВВАИУРЭ, 2008. – 152 с.

Кафедра «Радиотехника» ГОУ ВПО ТГТУ