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Abstract: In practice solution results of the cutting values optimisation problem
are often not flexible enough to choose for the concrete decision making in the
workshop. Beyond single set of the optimal cutting values f*, v.*, there are ranges of
vital interest around them, i.e., reasonable decision making intervals. Based on Koch
(1988), a new approach to get better, flexible solutions for the machining problem is
presented. The original general and a simplified mathematical models for the decision
making scope with predetermined risk are formulated. For a known example the
optimum ranges for the simplified mathematical model are obtained and introduced.

Nomenclature

A — area of the rectangle in Figure 6;

¢ — minimization of manufacturing costs
(dollars);

¢, — constant in tangential cutting force
equation;

c* — optimum value of manufacturing costs
(dollars);

Cmin — Minimum value of manufacturing costs
(dollars);

E — constant in modified tool life equation;

f— feed (inches/revolution);
f*¥ — optimum value
revolution);

Jfinins fmax — Minimum and maximum available
feed (inches/revolution);

[, f" — decision making ranges for feed,

£, /% — interval bounds for feed;

F, max — maximum allowable cutting force
(Ibs);

k — predetermined risk for manufacturing costs
(dollars);

/| — distance traveled by the tool in making a
turning pass (inches);

1 — restriction for tool life limit;

n — the slope of the Taylor line on log-log

paper;

of feed (inches/

n — constant in modified tool life equation;
Ry— tool life limit;
r — predetermined risk in tool life limit;
T, — tool changing time (minutes);
T, — nonproductive time (loading, unloading
and inspection time in minutes);
v.— cutting speed (surface feet/minute);
v.* — optimum value of cutting speed (surface
feet/minute);
Ve mins minimum and maximum
available cutting speed (surface feet/minute);
v.', v, " — decision making ranges for cutting
speed (surface feet/minute);

* v.™— interval bounds for cutting speed;

Ve max —

Ve Ve
x — labor plus overhead cost rate (dollars/
minute);

y — tool cost per cutting edge (dollars);

a — constant in tangential cutting force
equation;

B, & — constants of the stable cutting region
constraint;

Y — constant in tangential cutting force
equation;
A =12/(m D).
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Introduction

The determination of optimal cutting conditions is of vital meaning to ensure
maximum technical and economic efficiency in part production obtained by means of
manpower and machine tools available. The rationality and economy of manufacturing,
which are a result of material and energy saving and shorter machining times, depend to a
large extent on the right choice of selected cutting conditions and required product quality.

Once the operation sequences and the appropriate tools have been determined,
success and quality of the machining process depends on the selection of cutting values.
For example, in the case of turning, cutting values include feeds and cutting speeds. The
cutting values are selected to achieve the desirable performance such as good surface
finish, dimensional accuracy of the component, easy chip removal and so on. In
addition, they must also satisfy an economic criterion like minimum production cost or
maximum production rate. Thus, machining economics involves the optimal selection
of machining parameters such as cutting speed and feed subject to certain technological
constraints such as tool wear, dimensional accuracy, surface finish and machine tool
capabilities.

Since the early 1950s attempts have been done and results of these attempts have
been published (e.g., Boston (1951), Goranski (1963)) to follow F.W. Tailor's idea from
1906 for finding "economical speeds".

This paper is mainly dealing with the cutting values single objective optimisation
problem for the single-pass, single-tool turning operation where the considerations now
are restricted to cutting speed, v., and feed, £, only.

The experiments with applying miscellaneous mathematical models and solution
approaches to the single-pass, single-tool turning operation optimisation task, showed
that each of the approaches gave agreeable results.

The practice has also shown that after the optimisation problem has been solved,
the operator has the solution, including values, for example, for feed and cutting speed.
Usually these values are represented by some real numbers such as, for instance, f* =
=0.052 inch/rev, v.* = 143.7 feet/min, whereas, most machine tools for cutting
operations can only deal with certain discrete natural numbers. So, the operator is left
with the real single set of cutting values for the particular operation, which he can not
use in practice. In this situation the operator has to be skilled and experienced enough to
take a responsibility to choose some suitable discrete values for the machine tool, which
are no longer the optimal ones and could entail decrease in quality of the machining
process and as a result — the quality of product.

To overcome this problem is possible by, for example, buying advanced machine
tool with possibilities to change continuously the feeds and cutting speeds for the
operations. Such machine tools are very expensive, which leads to the situation where
not every manufacturing company can afford to purchase them.

Following Koch (1988), the attempt of this report is to try to subdue the problem
of choosing only the discrete numbers from the optimum cutting values, f* and v.*, by
introducing the ranges around them, so that the solution would be more flexible by
giving operator the opportunity to choose the cutting values for the machine tool from
the optimum range of the cutting values.

In this paper the realisation and testing the relevance of this idea are presented.
The confirmation of the results from the numerical experiments and the production
engineering consequences are discussed. Finally, conclusions and an outlook for our
further work are given.

1 Decision Making Scope With Predetermined Risk

The determination of cutting values includes different methods in parallel (Fig. 1).
Conventionally based methods for different applied situations are required: the
generation results from actual cutting process, personal experience, or calculation results.
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Cutting values determination

Intuition Experierce Calculation

Fig. 1 Possibilities for cutting values determination

The calculation contains mathematical models for optimisation, corresponding
software, experienced programmers and operators to assess the results of the
calculation.

When optimisation model is formulated and approved, programmer writes the
computer code for the program, runs it and gets the optimum solution points for the
cutting values. However, such solution points are often not flexible enough to choose
for the concrete decision making in the workshop. Around these optimal cutting values
f*, v.*, it is possible to determine certain variation ranges, i.e., reasonable decision
making intervals, by the following approach (Koch, 1988):

If the manufacturing engineer is willing to take a predetermined risk that might,
for example, consist in:

a) spending a small amount k more in manufacturing costs than the minimum costs
c* = c(f*, v.*) and/or

b) extending the feasible tool life limit Ry by a certain feasible level r due to
existing experiences;

then a new optimisation problem can be formulated and treated.

The graphical illustration of this situation is shown in Fig. 2.
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Fig. 2 Cutting values decision making intervals

ISSN 0136-5835. Bectruk TI'TY. 2005. Tom 11. Ne 1B. Transactions TSTU. 233



Ig v. 'S

~ ~ RT+ r
~
~
~
~
~
~
vcvv ” LS ~
7 Ve f* RN
> ~ ~
Y (%, ve*) ~
Ve
v
Costc* +k
>
S S

lg f

Fig. 3 Variable interval bounds

The new optimisation problem can be formulated as follows:
Determine the (variable) interval bounds (Fig. 3):

* #
f=r=r
* #Hit
ff=f =5
v:—vé:vf#;
" * HH#

Ve = Ve =V

close to fc*, v.* such that the function describing the area of an inscribed rectangle gets
a maximum value under the constraints that the predetermined risk (according to the
given r and k) is not exceeded, i.e.:

(f#+f##)*(vf+vf#)—>Max!,

where with any point of that rectangle [f #, f ##] X [vf , vf#] it is not “allowed” to

exceed
- the optimum manufacturing costs (or time) not more than ¢, + k&
and
- certain restrictions 1 (e.g., tool life limit Ry) not more than g; +r (1= 1,..., m).
This leads to a minimisation problem with even the possibility of v.* <0 or /< 0
or v < 0orf <0

(f#+f##)(vf+vf#)—>Max1 )

subject to
C*Sc(f*—f#, v:—vf)ﬁc*+k; 2)
C<elf v vy <tk 3)
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C<e(f -1 v vy <k (4)

¢ <e(f + M e v vk (5)
and/or
R <R(f =% v =Y <Ry +7; (6)
Rp <R+, v ey < Ry +7; (7)
R <R(f = 1%, ve + v <Ry +7; (8)
Rr <R(f + ™ v vy <Ry +r. 9)

2 Cutting Values Optimisation Task

In order to test the reasonability and relevance of the model (1) — (9) we used an
existing cutting values optimisation example selected from the vast scale of published
works. This example is taken from the paper published by Philipson and Ravindran
(1979). A single diameter is to be turned in one pass using optimal feed and cutting
speed, which will minimise costs.

The formulation of the optimisation problem, using minimum cost per component
as the optimisation criterion, is presented here.

The objective function is:

Minimise
c=xI; + xL+ (de L+y—lj vc[(l/n)_ljf[(l/nl)iq (10)
W f AE AE
subject to

VC SvaélX’ (11)

Ve 2 Vornin s (12)

S < finax > (13)

S 2 Jmin s (14)

vef* < constant, (15)

/2B, (16)

ve, f20. a7

The following example, given by Philipson and Ravindran (1979), is used to
illustrate the solution of the optimisation problem (10) subject to the constraints (11) —
17).

A single diameter is to be turned in one pass using optimal feed rate and cutting
speed which will minimize costs. The bar is 2.75 inches diameter by 12.00 inches long.
The turned diameter is 2.25 inches diameter by 10.00 long. In the cutting speed
calculations a mean diameter of 2.50 inches will be used. The lathe has a 15 horsepower
motor and a maximum speed capability of 1500 rpm. The minimum speed available is
75 rpm. The cost rate x = $0.15/minute, tool costs y = $0.50, idle time 7; = 2.00
minutes, 7; = 1.00 minutes, tool life constants £ = 113 420; n = 0.31; n; = 0.45;
A=1.528. Maximum available cutting force F, max = 1583.0 Ibs. Other constants are as
follows ¢, = 344.7; a.= 0.78; B =380 000; y=0.9; 5 = 2.0.

After inserting the fixed values into equation (10), the cost function becomes

982.0

vef

c=0.30+

+8.1x 1077y 33 1222 (18)
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(Note: for ease of calculations, f'is expressed in thousandths of an inch/revolution
rather than inches/revolution).

The constraints on v, and f are given by:

Ve £982.0;

Ve 249.1;

£<350;

f21.0;

ve 078 <4000.0 ;

v.20 £ >380000.0 ;

ve, f20.

19)
(20)
@n
(22)
(23)
24

(25)

To compute this cutting values optimisation problem the nonlinear optimisation
system NOSYS (Koch, 1993, 1996) has been used. The NOSYS assists the user to solve
complex optimisation tasks numerically (NOSYS/MENOS). In case of 2 problem
variables, it also has a possibility to provide for the user the graphical optimisation by

manipulation of bounds and moving through the feasible set (NOSYS/GRANOS).

By choosing GRANOS graphical optimisation module of the NOSYS it is
practicable to perform the graphical demonstration of the results of the calculation. The
graphical results of the cutting values optimisation problem are presented in the fig. 4.

The comparison of the results for the cutting values optimisation problem from the
Philipson and Ravindran (1979) paper with our calculations shown in Table 1.
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Table 1

Comparison of the results

. Philipson and
Optimal values Ravindran (1979) Koch and Ponomareva (2004)
f*, inches/revolution 0.035 0.035
v.*, surface feet/minute 153.37 153.33
c*, 8 0.561 0.561

This comparison of the results of Philipson and Ravindran (1979) model shows
that our program works and the software tool NVOSYS is reliable. Slight difference in
result of the optimum value for the speed v.* could be due to:

- negligible differences in the precision of the software used by Philipson and
Ravindran and software tool NOSYS we used;

- more powerful and precise computers and /or real numbers representation
available nowadays.

3 Application of the Idea of the Decision Making Scope
with Predetermined Risk to the Philipson and Ravindran Case

A deeper analysis of the situation shown in section 2 (see Fig. 4) can be carried out
with NOSYS/GRANOS by altering the bounds to zoom into the feasible set. Fig. 5
shows the solution point c*(f*, v.*) for the optimisation problem (18) subject to
constraints (19) — (25) and the contour line of the objective function with the
predetermined risk in manufacturing costs ¢* + k. The predetermined risk is assumed to
be 5 cents and objective function with that respect is equal to ¢*+k = $0.611.

Around the neighbourhood of the solution point (f*, v.*)" = (0.035,
153.332793)" with ¢* = 0.56140127 there are ranges of the cutting values as shown by
formulation of the optimisation mathematical model (1) subject to constraints (2) — (9).
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Fig. 5 Feasible set for the optimisation task
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Fig. 6 Optimum ranges of the cutting values
as the solution of the optimisation task (26) subject to constraints (27) and (28)

This is a general case for the decision making scope determination with the
predetermined risk optimisation task.

The first attempt to approach the solution for this task has led to a simplified
mathematical model. It has been decided to use only manufacturing costs objective
function and instead of using several inequality constraints to use 2 equality constraints
(see Fig. 6):

a) one for the point (f”, v;) as left lower corner and

b) another one for the point (f*, ve) as right upper corner of the inscribed

rectangle.
This leads to the optimisation task:
A=ab= (f - ) -v)) > Max! (26)
subject to
c(f',ve)=c*+k; 27)
c(f  v)=c*+k (28)
4 Results

To solve optimisation task (26) subject to constraints (27) — (28) the corresponding
computer code for NOSYS has been written. The results of the calculation are
demonstrated in Fig. 6. It shows the maximum possible value of the function describing
the area of the inscribed rectangle under the constraints with the predetermined risk
c* + k. As depicted on this figure the optimum solution c*(f*, v.*) of the Philipson and
Ravindran case lies on the right edge of the rectangle with the area A.

Table 2 shows the comparison of the results for the classical optimisation approach
for the cutting value optimisation task given by Philipson and Ravindran (1979) and
decision making scope with predetermined risk approach of Koch and Ponomareva
(2004).
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Table 2

Comparison of the results

Variables R:\fliﬁilprzcr)ln( ?19139) Koch and Ponomareva (2004)
¥, inches/revolution 0.035 0.0254 —0.035
v.*, surface feet/minute 153.37 146.6260 —221.3298
c*, 8 0.561 0.611

The results show that the operator can now choose the cutting values for the
machining operation from the range of optimum values. The optimum solution point
(7*, vo*)" = (0.035, 153.332793)" with ¢* = 0.56140127 is a part of the optimum range
with its f* = " = 0.035 lying on the edge of the rectangle with the area A; and the v .* =
= 153.332793 lying inside the interval v." and v.”. The question whether it is a necessary
condition to have the solution point to be a member of the optimum cutting values range
could be a subject for further investigations.

It is always better to have flexibility in the solution for the machining operations.
Having optimum ranges for the feed f'and cutting speed v., gives an operator some room
to adapt the solution to a real-world situation in the workshop. Of course, for flexibility
it has to be spent the value k of 5 cents.

5 Conclusions and Outlook for Further Work

In practice a single set of cutting values of optimisation problem is often not
flexible enough to choose for the concrete decision making in the workshop. Beyond
the optimal cutting values f*, v.*, there are ranges of vital interest around them, i.e.,
reasonable decision making intervals.

The paper presents an approval and its relevance to get better, flexible solutions
for the machining problem. The original general and simplified mathematical models
for the decision making scope with predetermined risk have been formulated.

The optimum ranges for the simplified mathematical model have been obtained
and shown in Table 2. These optimum ranges give the operator more flexibility in
choosing the cutting values for the real workshop situation.

Further work is to find the solution for the generally formulated mathematical
problem of decision making with predetermined risk including at least cutting depth, d..
Another question is whether it is a necessary condition to have the solution point to be a
part of the optimum cutting values range.
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IloBbImIeHHe KayecTBa 00padOTKH MeTa/llIa
BbIOOPOM KO3()(PUIIHEHTOB pPe3aHUsA

B.X. Kox, E.C. IlonomapeBa
Hopeeoiccrkuii ynusepcumem nayxu u mexnonoeuu, 2. Tponoxaiim

KuarwueBble ciioBa U ppa3bl: ko3DGUITHEHT CKOPOCTH pe3aHus; KO3DhHUIHEeHT
MOJIaYd MaTepraia; ONTHMH3AIUS 10 KodQHUINEHTaM pe3aHHs; OJXHOKpUTEpHATbHAS
3a/1a4ya ONTUMH3AINH; TOKapHas 00paboTKa MPH OJHOKPATHOM IPOXOKICHUH pPe3lia.

AHHOTanMs: Ha npaktrke pelieHHe 3aqavd ONTHMH3AMNHA KO3((PUIHMCHTOB
pe3aHus 4acTo HE IO3BOJISIET OMNEPaTOPy-TOKApIO HCIOJIb30BaTh €r0 B IPOU3BOJCTBE.

o *
BOprF OIITUMAJIBHBIX 3HAYCHUH KOS(I)(I)I/IL(I/IeHTOB pe3anusa f*, Ve HMECTC TakK

Ha3bIBaeMasl JOMyCTHMast 00IacTh NPUHSTHUS pelIeHUs. 3HAUEHHsI, HAXOISAIINXCS B JIaH-
HOM 00JIaCTH, MOTYT OBITh ONPEACISIONIMME JUIS MX YCIEUIHOTo NpuMeHeHus. M3ma-
raercs HOBBI MOAXOA K mpoOiieMe, Oazupyronmiics na npempiokennn Koxa (1988 r.).
[Ipn »ToM pemenne momydaercst Oojiee TMOKMM, a y OIepaTropa-TOKapsl IOSBUTCS
BO3MOXKHOCTb BBIOOpa ONTUMAJIBHBIX 3HaUeHHH KoddduienToB pesanus. Chopmynu-
pOBaHBI O0IIast W YNPOIIEHHAs MaTeMaTHYECKHe MOJENH ONTHMH3ALMOHHON 3a1adu
TIPUHSTHS PEIICHNS B YCIOBUAX pHUCKA. [IpencTaBieHo pereHne ynpomeHHOW MaTeMa-
THYECKOI MOJIETH B BUJIE 00IACTH ONTHMAIBHBIX 3HAYCHUH K03()(DUINCHTOB Pe3aHMs.

Steigerung der Qualitit der Metallbearbeitung durch
die Auswahl von Spanenskoeffizienten

Zusammenfassung: Die Losung der Aufgabe der Optimierung von
Spanenskoeffizienten darf vom Dreher-Operator in der Produktion oft nicht benutzt

werden. Um die Optimalwerte von Spanenskoeffizienten f*, v: gibt es sogenannte

zuldssige Entscheigungsgrenze. Die in diesem Bereich vorhandenen Werte konnen fiir
ihre Erfolgbenutzung konstitutiv sein. Es wird die neue auf Koch-Vorschlag (1988)
gegriindete Problemeinstellung dargelegt. Dabei wird die Losung flexibler und der
Dreher-Operator hat die Moglichkeit der Auswahl der Optimalwerte von
Spanenskoeffizienten. Es sind die gemeinsamen und vereinfachten mathematischen
Modelle der optimierten Entscheidungsaufgabe bei den Risikobedingungen formuliert.
Es ist die Losung der vereinfachten mathematischen Modelle als Bereich der
Optimalwerte der Spanenskoeftizienten dargelegt.

Augmentation de la qualité du traitement du métal par le choix
du coefficient de la coupe

Résumé: En pratique la solution du probléme de I’optimisation des coefficients
de la coupe ne permet pas souvent a l’opérateur-tourneur de ['utiliser dans Ia

production. Autour des valeurs optimales de la coupe f*, v: il y a un soi disant demaine

admissible pour I’adoption des solutions. Les grandeurs se trouvant dans ce domaine
peuvent étre déterminantes pour leur application réussite. On énonce une nouvelle
approche envers le probléme qui est basée sur la proposition de Koch (1988). Avec cela
la solution est plus souple; I’opérateur-tourneur a la possibilité du choix des solutions
optimales des coefficients de la coupe. Sont formulés les modéles mathématiques
général et simplifi¢ du probléme de I’optimisation de la prise des décisions dans les
conditions du risque. Est proposée la solution du modéle mathématique en forme du
domaine des solutions optimales des coefficients de la coupe.
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